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SADDLEPOINT OPTIMALITY IN DIFFERENTIAL GAMES

INTRODUCTION

Let the strategy of the minimizing player be p and that of the maximizing player be
e. Consider the question, What class of strategies e is to oppose a strategy, say p*, when
p* is asserted to result in “optimum” performance for the minimizing player? As Isaacs
[1] illustrates, this class must include all representable actlons of the max1m1zmg player.
Of course, it suffices to include all strategies ¢ that are ‘“playable’ with p* at arbitrary
points of the state (playmg) space. But, is it enough to include only those strategies ¢
that are playable with p* on the entire state space‘? In this report we address this ques-
tion and show under what conditions the answer is affirmative. In -addition, a simple
game is discussed which illustrates that the affirmative is not universal for all games,

The guestion does not arise in differential games where it is assumed a priori that all
strategy pairs are “playable;” [2,3]. In general, this assumption is invalid for differential
games where there are state constraints and/or a target set that is a function of the state
variabies other than time {4,5]. Even in games of prescribed duration or in pursuit—
evasion games where capture time is optimized, one cannot guarantee the “playability™
of all strategy pairs unless certain assumptions are made on the dynamics of the game;
e.g., see Varaiya [6]. Consequently, our question is posed for the large class of games
where not all strategy pairs are necessarily playable. We say that a strategy pair (p*, e™)
is optimal of Type I iff it is a saddlepoint with respect to all pairs (p*, e) and (p, e*) that
. are playable on at ledst one pomt of the state space. Thisis a pomtw1se type of optimality.
We say that a strategy pair (p*, e*) is optimal of Type II iff it is a saddlepoint with
respect to all pairs (p*, e) and (p, e*) that are playable over the entire state space. This

'Iﬂ a olahal tyna Af .r\h'l'rrnnlv"‘r Whith this tarminalacr  Aane snaackinn ic vanhvacad na Ta
B RAVLILL LY RO WAL WP ULLLLGLLU Y & ¥ AulL ULika Wlllluluiuw, WAL \i“cﬁ\llu“ iy lcPlllmwu Qiry 1D

optimality of Type II equivalent to that of Type I?

In the next section a family of games is defined in which the admissible strategies
are Borel measurable. The pointwise and global definitions of saddlepoint optimality are
then given, and a theorem asserting the equivalence between these two types for the given
family of games is proved. A closure property similar to that introduced in another paper [7]
is described. This is a property on the class of admissible strategies; i.e., a function formed
in a certain way from any two members of the admissible class is also admissible. It is
pointed out that this closure property is a sufficient condition for equivalence in general
games. A game example in which neither the closure property nor the eguivalence holds
is analyzed in the last section.

DEFINITION OF TWO-PERSON ZERQ-SUM DIFFERENTIAL GAMES
Consider a differential game with state equations

- = f(x, u, v) x € BV, u € E", v € E° (1)
Manuscript submitted May 17, 1974.




STALFORD AND LEITMANN

where £ is a Borel-measurable function mapping E® x E™ x ES into E". The playing space
X is a Lebesgue-measurable subset of E?. The target # is a closed set contained in the
closure of X, :

The two players, one the minimizer and the other the maximizer, choose the values
of u and v, respectively. Let U/ and V be compact subsets of E" and E®, respectively.
Define the two spaces of functions P and £ by

P = {pE" - Ul p is Borel measurable } {2)

E = {e:E" - V| ¢ is Borel measurable } . * {3)

The spaces P and E constitute the most general class of strategies considered herein from
which admissible strategies are defined. Because the strategies of the ph‘}yers have X as

their domain rather than E", we define the sets of admissible strategies ¥ and & as
f ={pX->Ul 3p €EP 3p|X =p} {4)
6 = {e:X > V| 3¢ €E Se X =e} (5}

where the notation p; |X = p means that p;{(x) = p(x) for all x € X; i.e., p is the
regiriction of p; to X. An analogous meaning attaches toe; | X = e

Letxg €X. Apair(p e} withpc Pamdecbisa Dlayable strategy pair at xy

if it generates at least one terminating trajectory ¢ satisfying

L) = x5 f flgdr), plg(r)), e(9(7))) dr Vi € ftg, 1] {6}
to

where ¢(t) € X for all t € [ty, ;) and where ¢ is the first time for which ¢{t;) €6.”
Let 7 (xg) denote the set of all playable strategy pairs at the point x;. Define

g = (1 36, | M
x =X

The set T(X) is the set of all sirategy pairs that are playable at every initial point of the
playing space. We assume that 9 (X) is nonempty.

Let x5 € X. Define

ped| 3e€ & 3 {p, e) is playable at x, }

P Ax4)
& {xg)

il

{e €8 | ipe $3 (p, ¢) is playable at x4 }.
For each ¢ € §(xg), we define

Ple,xy) = (P €9 (xy)l  (p, e)is playableatxg }; (8)
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and for each p €7 (x,), we define

1. {9

Efn & ~
(G e g !

k]

) = {e € 6(xy)l (p, e) is playable at x

0

The set? (xg) is the largest set of strategies from which the minimizer is permi'tt.efi to
choose when the initial state is xgq. If the maximizer plays e € &(xg) for the initial state
Xq, then the minimizer can only choose from the smaller space 7 (e, %g). Observe that

P(xg) = J Plexo).
eSE(xy)

An analogous statement holds for & (x,). Furthermore, we make the following definitions
for each e €& (x,) and each p € F(xq), respectively:

P(e, X) = xQS: Ple, x¢) (10)
&, X) = xQXg(p, %) - (11)

If the set P(e, X) is to be nonempty, it follows necessarily that ¢ must have a playable
mate at each x, € X and that it must have at least the same such mate for all x5 € X.
An analogous statement holds for &(p, X).

Let x4 € X and (p, e) € J(xy). We define T(x; p, €) to be the set of all solutions
of Eq. {1) emanating from x, and due to the strategy pair (p, e). Let ¢ € T{xy; p, €}

)
A real number denoted by V(xy; p, e, ¢) is associated with the quadruple {xq, p, ¢, ¢ } by

i
f
Vitgip e 0) = [ Fo(@(r), p$(T), e(d(r))) dr (12)

to

where f, is a real-value, bounded, Borel-measurable function with domain E” x Er x K5,
For each x; € X, the minimizer desires to minimize the number defined by KEq. (12),
while the maximizer wants to maximize it.

The concept of optimality for this game is explored in the next section.

POINTWISE AND GLOBAL DEFINITIONS OF SADDLEPOINT OPTIMALITY

In this section we define two types of saddlepoint conditions of optimality. The
first one, Type I, is termed pointwise because a candidate strategy pair for optimality is
compared at each point of the playing space with all strategy pairs that are playable at
that point. In Type II, such a candidate pair is compared only with those strategy pairs
that are playable over the entire state space, hence the term global. While these two types
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are equivalent {Theorem 1 in the next section) for Borel strategies, they are not necessarily

so for other classes of strategies {as established by the example in the Discussion section).
These two fypes of saddlepoint optimalily are defined sz follows,

Saddlepoint Optimality I. A strategy pa:r (p*, e*) is optimal iff it belongs to T(X)
and, for all xy € X and for all % € Tlxg; p*, e%), the following two inequalities are met:

Vixg; p*, e, ¢™) < Vixg;p, €¥ 9) v € Ple®, xy), V¢ € T(xq:p, e*) (13)

Vixg:p% e, ¢} < Vixg; p¥, ¥, ¢™) ve € B(p*,xy), YD € Tlxg;p* e). (14)

ﬂndﬁipnn it f.}ﬁ.,.m.bt}f o A strateg} pai Yhy {P*t e } is g?v}mni iff it f\n%nnrm tn 5{'{}_{¥
angd, for all x, € X and for all ¢* € T{x,; p¥, €*), the following two meqﬁahtses are met:

Vixg; p*, €%, 0%) < Vixg;p. ¥, 4) Vp € P(e*, X), ¥ E Tixgipe®) (1B
Vixg; p* e, 8) < Vixg;p*, e*, ™) Ve € 6(p%, X), V9 € Txgip™,€). (18)

The strategies p and e as arguments in Egs. (15) and {16) do not depend on the initial
state for their playability; those in Eqgs. {(13) and (14) do, Thus the saddlepoint optimality
of Type II SOMParss a candidate sirategy pair {y*, 2] ; for Upbiiiiﬁiiﬁj with sirategy pairs
from a considerabiy smaller class than that of Type I. Hence it is of interest to show under
what conditions the two types are equivalent with respect to proclaiming the same candidates
to be optimal. By way of Lemma 1 of the next section we show that these two types are
equivalent for the game as formulated in the preceding section. Recall that the Borel
strategies form the admissible strategies of the players. This Borel class of sirategies
satisfies a certain closure property which is discussed in the final section. This property of
a set heing “‘closed” provides a sufficient condition for the equivalence of the fwo types of
saddlepoint optimality. An example is discussed in which the closure property fails to
hold an#l where, indeed, a candidate is optimal of Type iI but not of Type L.

A THEOREM OF EQUIVALENCE

The following iemma i3 the basis for estabiishing the squivalence between the two types
of saddlepoint optimality.

Lemma 1. Let xy € X. If (p%, €*) and (p, &*) are playable at xy and if ¢ € T(xq; p, ™),
then the strategy pair {py, €*) is playable at Xy where py:X ~ U is defined by

plx} vx € {g(t):f € [ty, tf}}, where {15, :f] is the in%erval of definition of ¢
pifx) = {(17)

L VY Brse ¥l ndhawr » = ¥
1X) 0T au other ¥ & A

{‘ﬁ

Furthermore, {p,, €*) is playable over the entire playing space provided {p*, e*) is.
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Proof. Let A = {¢(t):t € {tg, tf]}. The set A is a compact subset of E" because ¢ is
absolutely continuous and its domain is compact. The continuous image of a compact:
set by a continuous function is compact [8]; thus, A is a Borel-measurable set.

According to the definitions of $ and & , there exist p*, p € P, and é* € E such
that

pHx) = BHE) | (18)
p(x) = Blx), (19)
e*(x) = é%(x) (20)

for all x € X. Define p;:E" = U as

B(x) vz € A
ﬁl(x) =
‘ pHx) Vx €EE* - A. (21)

The function pl is Borel measurable because p* and p are Borel measurable and A isa
Borel-measurable set. Consequently, p; € ? because pp is the restriction of p1 to X.
Because pp(x) = p(x) at all pomts x along the trajectory ¢, it follows that ¢ is a termmat-
ing trajectory for the pair (p1, e ) Therefore, (p,, e e¥*) is a playable strategy pair at Xq-

Suppose that (p¥, e*) belongs to § (X) We want to show that (p;, ™) belongs to
J (X). We have already shown that (p{, ¢ *) belongs to J(xg). Suppose to the contrary
that (py, e e*) & (X). Then there is some x € X with x # xq such that (py, ¢*) & T (x);
that is, the pair (p,, "‘) does not provide a terminating trajectory emanating from x. It
suffices then to demonstrate that (p,, e e*) does, in fact, induce a terminating trajectory,
say ¢y.

Let ¢™* € T(x; p* e*). Let [t t:*] be the time domain of ¢*, where ¢ corresponds
to the state x if time is a component of the state variable, say x, = ¢, Let f; be the -
smallest time contained in {¢, ;‘*] such that ¢*(¢,) € A. If no such t, ex1sts then ¢* €

T(x; pq, e¥) because p1(x) = p¥(x) for all x &€ 4. Define ¢, = ¢™. The nonexistence of
t, contradicts, therefore, the assumptlon that (py, e*) & T(x).

Hence, suppose ¢, exists. Let x, = o* (t,). Now let t; be the maximum time such
that ¢(¢;) = x,. Note that if time is a component of the state variable, then t, = t,. We
will consider thls case first and afterward the case in which time does not enter exphmtly
into the dynamics; i.e., an autonomous process.

If t}, = t,, define the absolutely continuous function ¢; by

1[sf’*(?') vr €[4 t,]
¢q(7) =

o) vr et
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Observe that ¢, satisfies Eq. {8) for the strategy pair (py, e*) where x is the initial state.
Again we have shown that (p;, ¢*) € J(x).

Suppose the process is autonomous. A trivial but important property of such processes
is that if ¢* is a solution of Eq. (6}, then so is ¢,, [9], where

${r) = ¢™(r + &) T E[t - ot - el (23)
and where ¢ is any real number. Let
c =1, - . {24)
Note that ¢, has the time domain [t - £, + #;, ;% - ¢, + 1, ] and that ,(8,) = #(t,) = x,.
Define
P.(T) Yr €[t - ¢t}
= {25)
#H7) V7T € (&, 8] -
Thus, ¢, € T(x; py, €) and (py, ¢¥) € F(x), concluding the proof of the lemma.
Interchanging the roles of p and e in this lemma yields an analogous result for con-
structing a playable strategy pair (p*, e,) from two other playable strategy pairs (p*, e®)
and (p*, ¢). This observation together with the above lemma is used in the proof of the

following theorem.

Theorem. A strategy pair (p*, €*) that is playable over all of the playing space is
¢ saddlepoint strategy of Type II iff it is a saddlepoint strategy of Type L

Proof. Let (p*, e*) € F(X) be optimal according to the saddlepoint optimality criterion
of Type I. From the definitions of P(e*, X) and &{p*, X) in Egs. (10) and {11),
it follows from inspection of Egs. (13} to (18} that (p*, e*) is optimal of Type 1L
Conversely, suppose {(p*, e*) satisfies the saddlepoint optimality criterion of Type 11,

Suppose further that {p”, e*} is not optimal of Type I. This implies that there exist x5 € X,
p € P(e* xp), % € T(xg, p*, e¥), and ¢ € T(xy; p, ¢*) such that

Vixg: p¥, €% ¢%) > Vixg;p, e¥, 6% (26)°
or there exist, in place of p and ¢, e € §{p™, xp) and ¢ € T(xy; 2% 2) such that

Vizgip* e, $) > Vizgip® e* 9%). (20

We show that (26) cannot hold. It can be shown similarly that {27) cannot hold. Using
the definition of {17), we note that ¢ € T(xy; py, €”) and that

Vixg:p, %, ¢) = Vixg:py, e*. ). 28)
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According to Lemma 1, (pq, €*) € T(X). Thus, from (15) we have
Vixg; p*, €%, %) < Vixgipq, e*, 9) . (29)

Inequality (29) together with (28) contradicts (26), concluding the proof.

DISCUSSION

Let S denote a set of strategies ¢:E" — W where W is compact in E™, Consider the
time interval [Q, 1] and let TR({O, 1] En) denote a set of trajectories with domain [0, 1}
and range in E*. Let AC([0, 1], E™] represent the set of all absolutely continuous func-
tions from [0, 1] into E™, Because all solutions of ordinary differential equations are
absolutely continuous and trajectories are such solutions, it follows necessarily that

TR([O, 1], En) C AC([0, 11, En).

Let ¢ belong to TR({0, 1], E*) and let ¢([0, 1]) denote the image of [0, 1] under the

mapping ¢.

Definition. The set of strategies S is called closed with respect to TR([0, 1], E"} iff for
every g, 6™ € § and for every ¢ € TR([0, 1], E"), the function 0, also belongs to S, where

o(x) vx € ¢(f0,1])
o, (x) = (30)
o*(x) Yx € E® - ¢([0, 1]).

then § is said to be

If, in the above definition, TR([0, 1], E®) equals AC([0, 11, E”), then 8 e
closed. The property of a space S of strategies satisfying (30) is called a property Of
closure. It is shown in the proof of Lemma 1 that the set of Borel-measurable strategies

is closed. It is this property of P and E being closed that led to the equivalence between
the two types of saddlepoint optimality. If this closure property does not hold, it is con-
ceivable that the two types of optimality could disagree on the optimality of a particular
candidate in some game. True, if a playable strategy pair is optimal according to Type I,
then it is also optlmal according to Type II. The question is then whether it is possible for
a strategy pair (p e ) to be optimal of Type II but not of Type I, This can only happen
if (15) and (16) are met ang if there are x4 € X, ¢™ € T(xq; p*, €*), p € P(e*, x,), and

¢ € T(xq; p, €*) such that

Vixg; 0¥, €%, ¢™) > Vi(xg;p, e, ¢), (31)
or, in place of P and ¢, there are e € §(p™, xp) and qlJ € Tixg; ¥, e) such that
Vixg; 0¥, e, 9) > Vixg;p*, e, ¢%). (82)

A game in which (15), (16), and (32) hold is illustrated by the following simple
example: Let

xy = u, u€e U= {-1,11} (33)
Xy = v, v E V= {10} (34)

7
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and let the integrand of the payoff, Eq. (12), be given by

folxy, %0, u,v) = ful - v. (35)
Define |
B; = {x € E2:xy = Qandx; < 0},
by = {x € EZ:xy = landxy, = 0},
83 = {x € E2:x; = 0and0 < x5 < 1},
X; = {x € F2:x4 > 0andx; < 0},

Xo = {x € B2:xyg > Tandxy > 0}
where x = (x1, X5). The playing space and target set are

é

f

6, U8,y U 8y

In the game under discussion, we restrict the sets of admissible strategies, P and E, tc the
class of constants. Thus, % and & each contains only two strategies; namely,

$ contains pdx) = 4 i=-11
& contains efx) = J, i=-10
forallx € X
The strategy pairs (p.y, ;) and {p;, e_;) are the only pairs that are playable on the
entire playing space X. We show subsequently that (p;, e-1) is optimal of Type II but
not of Type 1. In particular, we show that (27) holds.

Define

-{xEXi{}sz—léxl},

jus)
[y
|

By, = {x € Xlxy <25 - 1},
33={.7€EX1£}<$2<1, :(2 -<\x1+1};
For xg = (x4(fg), x5(tg)), observe that
2x5(ty) - 13 Yxg € By
Vixg;poy,€4) = (36)
2x4(tg) Yx, € By U By,

where the trajectory has been deleted as an argument of ¥V because all solutions of Eqgs.
(33) and {34) are unique in this game.
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Write
¢y = {x € Xlx; + x5 2 1},
CZ = {x €X|x1 + Xg < 0},
Ca_—-{xEXIO x1+x2'-—.1}.
Note that
2[xg(ty) - 11 " Vxg € Cy,
Vixg; Py, 1) = { 2x5(tp) Vxg € Cy, (87)

One can verify that
Vixg:P1, eq) = Vixgipq.e3) ¥xg € X (38)
and that, for all xé contained in the interior of By N €y,
Vixg:p1,e1) < Vixg;p_1,€1). : (39)
The inequality (38) implies (15) is met for the candidate (py, e_;} because (p_;, €_;)
is the only other member of P(e.y, X). The pair (p_;, e_,) is not optimal of Type II
because (39) implies that (15) fails for this strategy.
The inequality (16} is trivially met for the candidate (p,, e_;) because e_; is the

unique member of &(p,, X). Thus, the pair (p,, e_;) is optimal of Type II and as such it
is unique.

Toa show that fnl 2_- ) iz not optimal of Type I, congider 4 £, €00, 1), Select any
%y such that ) < -2£,. Consider the effect of the strategy e, which is playable with
py at the initial state £ = (£,, £5). Note that

V(£ py,eq) = -%4.
Because -£; > 2&,, we have
V(#3p1, €0) > 2k, . (40)
Because £ € C,, it follows from (37) together with (40) that
V(%;py.e9) > Vi(dipy,eq). (41)

This is the restatement of (32) for this game example. Therefore, the playable strategy
pair (py, e.) is not optimal of Type I even though it is optimal of Type IL

Only constant étfategies were admissible in this example, resulting in the nonequivalence

of optimality Types I and II. For such strategies, the closure property does not hold. As
shown by Theorem 1, the set of Borel strategies leads to an equivalence between the two

9




STALFORD AND LEITMANN

optimality types, and these sirafegies satisfy the closure property. Neveriheless, the
closure property, while being a sufficient condition for this equivalence, is by no means
a necessary condition.
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